

Cal Poly Pomona

4-Bit General-Purpose Register

Experiment 11

Steven Keesler, Andrew Riad
11/14/2025

0.0 PRELAB

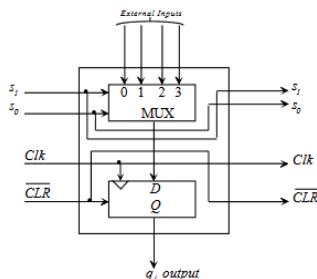
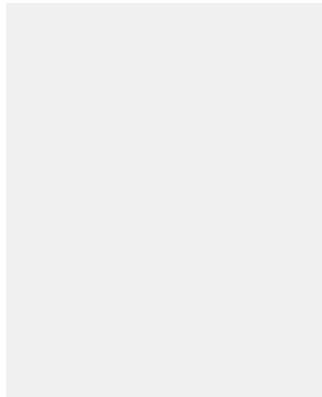


0.1 Design a 4-bit general-purpose register as follows in table 0.1:

Table 0.1: Given State Table

S1	S0	Function
0	0	Load external data
0	1	Rotate left; ($A_0 \leftarrow A_3$, $A_i \leftarrow A_i - 1$ for $i = 1,2,3$)
1	0	Rotate right; ($A_3 \leftarrow A_0$, $A_i \leftarrow A_i + 1$ for $i = 0,1,2$)
1	1	Increment

0.2 Use the following cell S as the building block, as given by figure 0.2:

Figure 0.2: Basic Cell S Diagram

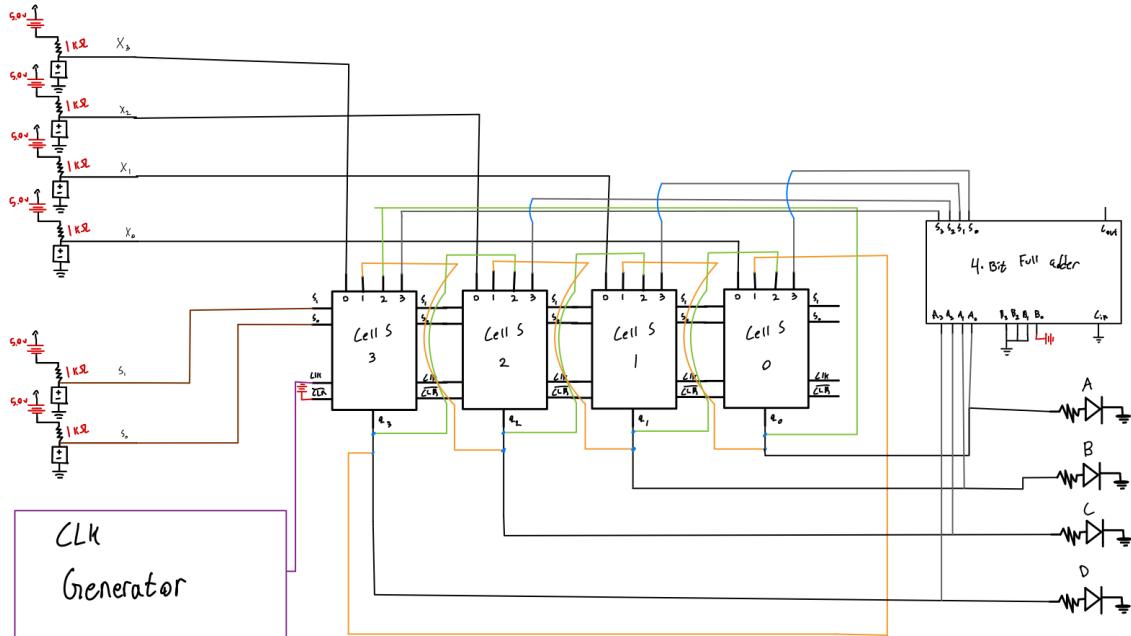

Internal Organization of the Basic Cell S

Table 0.2: Schematic State Table

Inputs		Current State					Next State				
S1	S0	T3	T2	T1	T0	Q3	Q2	Q1	Q0		
0	0	W	X	Y	Z	W	X	Y	Z		
0	1	A3	A2	A1	A0	A2	A1	A0	A3		
1	0	A3	A2	A1	A0	A0	A3	A2	A1		
1	1	A3	A2	A1	A0	A3+C2	A2+C1	A1+C0	A0+1		

Figure 0.3 : 4-Bit General-Purpose Register Circuit Schematic

Increment Switches Right Shift Left Shift Cllc

Logic Explanation of Table 0.2 & Figure 0.3:

Select 0: To load external data, the switches for WXYZ go straight into the Select 0 of each Basic Cell S0-3. (W to T3, X to T2, Y to T1, Z to T0)

Select 1: To rotate left, the output of a given cell, Q0-2, goes into the Select 1 input of the Basic Cell S to its left, T1-3. The output of the basic cell, Q3, goes to the input of T0.

Select 2: To rotate right, the output of a given cell, Q1-3, goes into the Select 2 input of the Basic Cell S to its right, T0-2. The output of the basic cell, Q0, goes to the input of T3.

Select 3: To increment up we use a full adder with the first set of BCD permanently set to 0001, so it's always adding one, and run the outputs from it back into the Select 3 of the original cell it came from.

This is shown in table 0.2 through the use of Carry ins (+C0-2) added to Q1-3, and a simple +1 for Q0.

We use 2 dip switches to determine our selects, and use a waveform generator as needed for the clock.

Figure 0.1 below is the schematic built following table 0.1, and the above logic.

1.0 INTRODUCTION

Implement the above design and demonstrate to the instructor. Demonstrate the operations using switches and LEDs, etc. as needed. Schematics will be pulled from Pre-Lab when needed.

2.0 OBJECTIVES

The goal is the following:

1. Realize the 3 different states: rotate left, rotate right, and increment, using the minimal amount of required parts.
2. Encode these states to the loop when needed and drive 4 LEDs (displaying BCD).
3. Allow us to load a desired BCD into the register to rotate or increment when needed.
4. Verify operation across all 4 selects.

3.0 REQUIREMENT

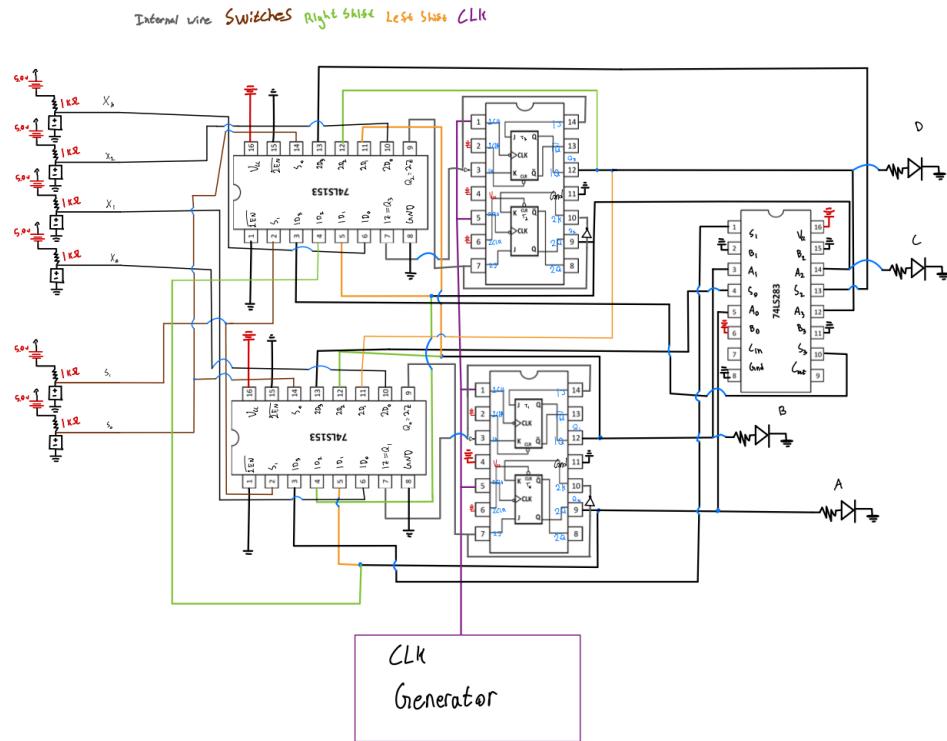
Implement the state table 3.1 below, pulled from pre-lab table 0.1. Using switches and LEDs, etc. as needed, show Rotate Left, Rotate Right, and Increment of a loaded External Data. Schematics will be pulled from Pre-Lab when needed.

Table 3.1: Given State Table

S1	S0	Function
0	0	Load external data
0	1	Rotate left; (A0 <- A3 , Ai <- Ai – 1 for i = 1,2,3)
1	0	Rotate right; (A3 <- A0 , Ai <- Ai + 1 for i = 0,1,2)
1	1	Increment

4.0 PARTS LIST

The Parts list for this experiment is shown below in Table 4.1


Table 4.1 - Parts List

Item No.	Part Number	Function	Quantity
1	74LS153	4-1 Multiplexer	2
2	74LS04	Inverter	1
3	74LS73	JK Flip Flop	2
4	74LS283	4-bit Full Adder	1
5	DIP Switch	Input	2
6	LED	Output	4

5.0 DESIGN/IMPLEMENTATION

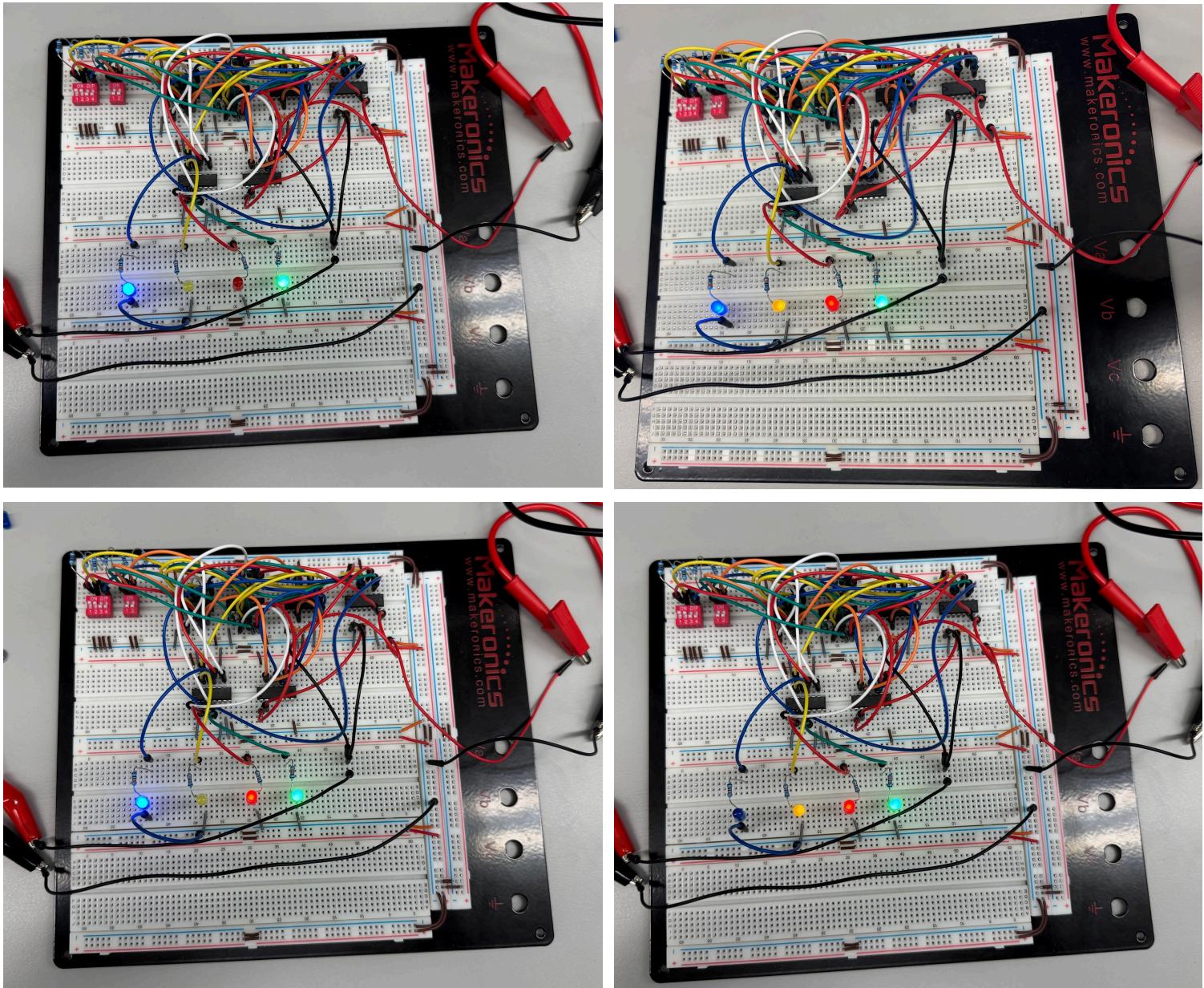

The design from figure 0.3 in the prelab will be tested, and it will be shown again below in figure 5.1. A dip switch will be used to provide the inputs for the parallel load, as well as for the selects, and the outputs for each given state will be shown using 4 LEDs.

Figure 5.1

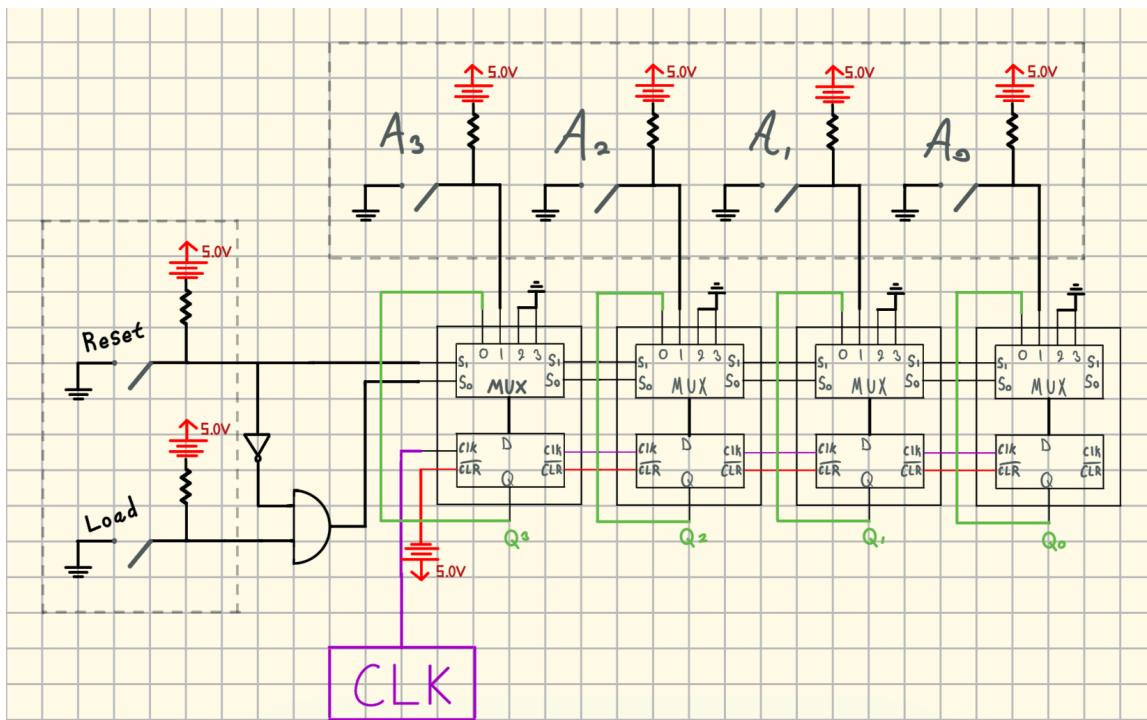
6.0 TEST SETUP

Below is an image of the breadboard, the 2 dip switches provide the parallel load for Select 0, and S1/S0 to choose the select. Two 74LS153s & two 74LS137s allow us to implement 4 of the Basic Cell S that was shown in the Pre-Lab given to us. We load in a given input into Select 0, and going through the different selects, the desired effects are shown on the 4 LEDs.

7.0 TEST RESULTS/VERIFICATION MATRIX

The test results are summarized below in Table 7.1:

Table 7.1 - State Table of Circuit


States		Variables			Verification
Select (S1 S0)	Function	Test Input	Expected Output	Observed Output	Works? (Y/N)
00	Parallel Load	1001	1001	1001	Y
01	Rotate Left	1001	0011	0011	Y
10	Rotate Right	1001	1100	1100	Y
11	Increment	1001	1010	1010	Y

8.0 Conclusion

The assembled 4-bit register made from two 74LS153s & two 74LS137s has operated correctly: loading inputs at Select 0, Rotating left at Select 1, Rotating Right at Select 2, and Incrementing at Select 3. All of this displayed on our 4 LEDs. The measurements across all 4 states matched the expected behavior from 3.1, as shown above in Table 7.1.

9.0 Post Lab

Design a 4-bit register with a reset input, a parallel input and a positive edge-triggered clock. The 4-bit register is cleared to 0 at the positive edge of the reset. On the other hand, if the load input is high, 4-bit data is transferred to the register at the positive edge of the clock.

